Ranking the Best Instances
نویسندگان
چکیده
We formulate a local form of the bipartite ranking problem where the goal is to focus on the best instances. We propose a methodology based on the construction of real-valued scoring functions. We study empirical risk minimization of dedicated statistics which involve empirical quantiles of the scores. We first state the problem of finding the best instances which can be cast as a classification problem with mass constraint. Next, we develop special performance measures for the local ranking problem which extend the Area Under an ROC Curve (AUC) criterion and describe the optimal elements of these new criteria. We also highlight the fact that the goal of ranking the best instances cannot be achieved in a stage-wise manner where first, the best instances would be tentatively identified and then a standard AUC criterion could be applied. Eventually, we state preliminary statistical results for the local ranking problem.
منابع مشابه
Algorithm Selection via Ranking
The abundance of algorithms developed to solve different problems has given rise to an important research question: How do we choose the best algorithm for a given problem? Known as algorithm selection, this issue has been prevailing in many domains, as no single algorithm can perform best on all problem instances. Traditional algorithm selection and portfolio construction methods typically tre...
متن کاملQuEst for High Quality Machine Translation
In this paper we describe the use of QE, a framework that aims to obtain predictions on the quality of translations, to improve the performance of machine translation (MT) systems without changing their internal functioning. We apply QE to experiments with: i. multiple system translation ranking, where translations produced by different MT systems are ranked according to their estimated q...
متن کاملTop Rank Optimization in Linear Time
Bipartite ranking aims to learn a real-valued ranking function that orders positive instances before negative instances. Recent efforts of bipartite ranking are focused on optimizing ranking accuracy at the top of the ranked list. Most existing approaches are either to optimize task specific metrics or to extend the ranking loss by emphasizing more on the error associated with the top ranked in...
متن کاملRandom Forest for Label Ranking
Label ranking aims to learn a mapping from instances to rankings over a finite number of predefined labels. Random forest is a powerful and one of the most successfully general-purpose machine learning algorithms of modern times. In the literature, there seems no research has yet been done in applying random forest to label ranking. In this paper, We present a powerful random forest label ranki...
متن کاملRanking Relevant Verb Phrases Extracted from Historical Text
In this paper, we present three approaches to automatic ranking of relevant verb phrases extracted from historical text. These approaches are based on conditional probability, log likelihood ratio, and bagof-words classification respectively. The aim of the ranking in our study is to present verb phrases that have a high probability of describing work at the top of the results list, but the met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 8 شماره
صفحات -
تاریخ انتشار 2007